31 research outputs found

    A kinematic study of the Taurus-Auriga T association

    Get PDF
    Aims: This is the first paper in a series dedicated to investigating the kinematic properties of nearby associations of young stellar objects. Here we study the Taurus-Auriga association, with the primary objective of deriving kinematic parallaxes for individual members of this low-mass star-forming region. Methods: We took advantage of a recently published catalog of proper motions for pre-main sequence stars, which we supplemented with radial velocities from various sources found in the CDS databases. We searched for stars of the Taurus-Auriga region that share the same space velocity, using a modified convergent point method that we tested with extensive Monte Carlo simulations. Results: Among the sample of 217 Taurus-Auriga stars with known proper motions, we identify 94 pre-main sequence stars that are probable members of the same moving group and several additional candidates whose pre-main sequence evolutionary status needs to be confirmed. We derive individual parallaxes for the 67 moving group members with known radial velocities and give tentative parallaxes for other members based on the average spatial velocity of the group. The Hertzsprung-Russell diagram for the moving group members and a discussion of their masses and ages are presented in a companion paper.Comment: accepted for publication by A&

    Integrating Repositories With Research Infrastructure: The Astronomical Virtual Observatory

    Get PDF

    Interoperability tools for the Virtual Observatory

    Get PDF
    Interoperability is one of the key issues in the current efforts to build the Virtual Observatory. We present here some of the tools which already contribute to the efficient exchange of information between archives, databases, and journals.Comment: To appear in Proc. SPIE Conf. vol. 4477, Astronomical Data Analysis, San Diego, August 200

    The ALADIN Interactive Sky Atlas

    Get PDF
    The Aladin interactive sky atlas, developed at CDS, is a service providing simultaneous access to digitized images of the sky, astronomical catalogues, and databases. The driving motivation is to facilitate direct, visual comparison of observational data at any wavelength with images of the optical sky, and with reference catalogues. The set of available sky images consists of the STScI Digitized Sky Surveys, completed with high resolution images of crowded regions scanned at the MAMA facility in Paris. A Java WWW interface to the system is available at: http://aladin.u-strasbg.fr/Comment: 8 pages, 3 Postscript figures; to be published in A&

    The SIMBAD astronomical database

    Get PDF
    Simbad is the reference database for identification and bibliography of astronomical objects. It contains identifications, `basic data', bibliography, and selected observational measurements for several million astronomical objects. Simbad is developed and maintained by CDS, Strasbourg. Building the database contents is achieved with the help of several contributing institutes. Scanning the bibliography is the result of the collaboration of CDS with bibliographers in Observatoire de Paris (DASGAL), Institut d'Astrophysique de Paris, and Observatoire de Bordeaux. When selecting catalogues and tables for inclusion, priority is given to optimal multi-wavelength coverage of the database, and to support of research developments linked to large projects. In parallel, the systematic scanning of the bibliography reflects the diversity and general trends of astronomical research. A WWW interface to Simbad is available at: http://simbad.u-strasbg.fr/SimbadComment: 14 pages, 5 Postscript figures; to be published in A&A

    Towards a European network of FAIR-enabling Trustworthy Digital Repositories (TDRs) - A Working Paper

    Get PDF
    This working paper is a bottom-up initiative of a group of stakeholders from the European repository community. Its purpose is to outline an aspirational vision of a European Network of FAIR-enabling Trustworthy Digital Repositories (TDRs). This initiative originates from the workshop entitled “Towards exploring the idea of establishing the Network”. The paper was created in close connection with the wider community, as its core was built on community feedback and the first draft of the paper was shared for community-wide consultation. This paper will serve as input for the EOSC Task Force on Long Term Digital Preservation. One of the core activities mentioned in the charter of this Task Force is to produce recommendations on the creation of such a network. The working paper puts together a vision of how a European network of FAIR-enabling TDRs could be based on the community’s needs and its most important functions: Networking and knowledge exchange, stakeholder advocacy and engagement, and coordination and development. The specific activities hosted under these umbrella functions could address the wide range of topics that are important to TDRs. Beyond these functions and the challenges they address, the paper presents a framework to highlight aspects of the Network to further explore in the next steps of its development

    Working with Gravitational-Wave sky localizations: new methods and implementations

    Get PDF
    International audience; The era of multi-messenger astrophysics with Gravitational Waves (GW) requires the exploration and development of suitable methods and tools for real-time analysis as well as post-processing activities. The irregular and complex shapes of the GW sky localizations represent a new challenge for observational astronomers, who need to work with fast tiling, catalog queries, transient localizations, visibility and sky map comparisons. Here we show how gravitational-wave sky maps can be easily and efficiently visualized and processed using Multi-Order Coverage (MOC) maps. These maps are based on HEALPix sky tessellation which uses both Python language and the recent implementation in Aladin Desktop/Lite. In addition to this, we describe a specific interactive script, named GWsky, that we developed to effectively tile the sky localization of a gravitational-wave event providing accurate telescope pointings. We also show applications of these methods and tools for educational purposes in Virtual Reality Apps, high resolution images, and basic sonification of the GW sky maps.Finally, we describe possible evolutions of such implementations when three or more ground-based interferometers will be involved in a gravitational-wave source localization (i.e. Virgo,LIGO–Hanford, LIGO–Livingston, KAGRA, LIGO–India) with a corresponding increase of the sky map resolution

    The VO: A Powerful Tool for Global Astronomy

    Get PDF
    Since its inception in the early 2000's, the Virtual Observatory (VO), developed as a collaboration of many national and international projects, has become a major factor in the discovery and dissemination of astronomical information worldwide. The International Virtual Observatory Alliance (IVOA) has been coordinating all these efforts worldwide to ensure a common VO framework that enables transparent access to and interoperability of astronomy resources (data and software) around the world. The VO is not a magic solution to all astronomy data management challenges but it does bring useful solutions in many areas borne out by the fact that VO interfaces are broadly found in astronomy's major data centres and projects worldwide. Astronomy data centres have been building VO services on top of their existing data services to increase interoperability with other VO-compliant data resources to take advantage of the continuous and increasing development of VO applications. VO applications have made multi-instrument and multi-wavelength science, a difficult and fruitful part of astronomy, somewhat easier. More recently, several major new astronomy projects have been directly adopting VO standards to build their data management infrastructure, giving birth to ‘VO built-in' archives. Embracing the VO framework from the beginning brings the double gain of not needing to reinvent the wheel and ensuring from the start interoperability with other astronomy VO resources. Some of the IVOA standards are also starting to be used by neighbour disciplines like planetary sciences. There is still quite a lot to be done on the VO, in particular tackling the upcoming big data challenge and how to find interoperable solutions to the new data analysis paradigm of bringing and running the software close to the data. We report on the current status and also desire to encourage others to adopt VO technology and engage them in the effort of developing the VO. Thus, we wish to ensure that the VO standards fit new astronomy projects requirements and needs
    corecore